If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-4t-20=0
a = 1; b = -4; c = -20;
Δ = b2-4ac
Δ = -42-4·1·(-20)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{6}}{2*1}=\frac{4-4\sqrt{6}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{6}}{2*1}=\frac{4+4\sqrt{6}}{2} $
| q-10=-2 | | 12g=7 | | 8p+8=0 | | (x-27)=28 | | 10x+(-3)=3x(+5) | | 4n+n=17–2 | | 3-x/2=1/3 | | 3x^2=83 | | 2(4x×3)=10x-2 | | 3/n=24/25.6 | | 4y=7+15 | | 7+8y=34 | | 3q/4=15 | | x^2+14x-144=0 | | 18m–16m=30 | | 3a+2=10-a | | 5(n)=n-5(n-1)+5 | | 14=8+z(2) | | x+80+72°+x+50=180° | | x+80+72°+x+50=180 | | 16x^2-50x+25=0 | | 100=x-(x*0,6) | | 5(3y-2)=35* | | n–1=12 | | 7,5*10^5=(9*10^9*(3.6*10^-6)*0,5)/(x^2-0,0625) | | 7,5*10^5=(9*10^9*(3.6*10^-6))/(x^2-0,0625) | | X+5(x-1)=5(2-x) | | 153*5+x=800 | | 6d(d-3)=25 | | 5x+0.2x=800 | | X^3+7x-9=0 | | (D²+5D+4)(2D²+5D+2)y=0 |